machine learning - OneVsRestClassifier(svm.SVC()).predict() gives continous values -


i trying use y_scores=onevsrestclassifier(svm.svc()).predict() on datasets iris , titanic .the trouble getting y_scores continous values.like iris dataset getting :

[[ -3.70047231  -0.74209097   2.29720159]  [ -1.93190155   0.69106231  -2.24974856] ..... 

i using onevsrestclassifier other classifier models knn,randomforest,naive bayes , giving appropriate results in form of

[[ 0  1   0]  [ 1   0  1]... 

etc on iris dataset .please help.

well not true.

>>> sklearn.multiclass import onevsrestclassifier >>> sklearn.svm import svc >>> sklearn.datasets import load_iris >>> iris = load_iris() >>> clf = onevsrestclassifier(svc()) >>> clf.fit(iris['data'], iris['target']) onevsrestclassifier(estimator=svc(c=1.0, cache_size=200, class_weight=none, coef0=0.0, degree=3, gamma=0.0,   kernel='rbf', max_iter=-1, probability=false, random_state=none,   shrinking=true, tol=0.001, verbose=false),           n_jobs=1) >>> print clf.predict(iris['data']) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 2] 

maybe called decision_function instead (which match output dimension, predict supposed return vector, not matrix). then, svm returns signed distances each hyperplane, decision function mathematical perspective.


Comments

Popular posts from this blog

sql server 2008 - My Sql Code Get An Error Of Msg 245, Level 16, State 1, Line 1 Conversion failed when converting the varchar value '8:45 AM' to data type int -

javascript - Laravel datatable invalid JSON response -

java - Exception in thread "main" org.springframework.context.ApplicationContextException: Unable to start embedded container; -